Prof. Dr. Andreas Weber
Leiter Studiengang Wirtschaftsinformatik
Erzbergerstraße 121, Raum C547
- Telefon:
- +49.721.9735-931
- E-Mail:
- andreas.weber @dhbw-karlsruhe.de
Ausbildung
2006 ‑ 2008 |
Postdoc, Fakultät für Mathematik, Universität Karlsruhe |
2003 ‑ 2006 |
Promotion, Fakultät für Mathematik, Universität Karlsruhe |
2002 |
Post-Graduate, University of South Carolina, Columbia, USA |
1997 ‑ 2002 |
Studium der Mathematik, Universität Karlsruhe, Abschluss als Diplom-Mathematiker |
Berufliche Tätigkeiten
seit 2022 |
Leiter Studiengang Wirtschaftsinformatik - Data Science |
2019 ‑ 2022 |
Professor im Studiengang Wirtschaftsinformatik, DHBW Karlsruhe |
2014 ‑ 2019 |
Lehrbeauftragter für Statistik, DHBW Karlsruhe |
2008 ‑ 2019 |
Softwareentwicklung, SAP SE |
2003 ‑ 2008 |
Wissenschaftlicher Mitarbeiter, Institut für Algebra und Geometrie, Universität Karlsruhe |
Lehrgebiete
Mathematik, Machine Learning |
Veröffentlichungen
-
(2021): A population structure-sensitive mathematical model assessing the effects of vaccination during the third surge of COVID-19 in Italy. In: Journal of Mathematical Analysis and Applications. DOI: 10.1016/j.jmaa.2021.125975
DOI: https://doi.org/10.1016/j.jmaa.2021.125975 Abstract: We provide a non-autonomous mathematical model to describe some of the most relevant parameters associated to the COVID-19 pandemic, such as daily and cumulative deaths, active cases, and cumulative incidence, among others. We will take into consideration the ways in which people from four different age ranges react to the virus. Using an appropriate transmission function, we estimate the impact of the third surge of COVID-19 in Italy. Also, we assess two different vaccination programmes. In one of them, a single shot is administered to all citizens over 16 years old before second shots are available. In the second model, first and second shots are administered to each citizen within, approximately, 20 days of time-gap.
-
(2007): Heat kernel estimates and L^p-spectral theory of locally symmetric spaces
DOI: https://doi.org/10.5445/KSP/1000005774 Abstract: In this work we derive upper Gaussian bounds for the heat kernel on locally symmetric spaces of non-compact type. Furthermore, we determine explicitly the Lp-spectrum of locally symmetric spaces M whose universal covering is a rank one symmetric space of non-compact type if either the fundamental group of M is small (in a certain sense) or if the fundamental group is arithmetic and M is non-compact.