
RAHM-LAB @ DHBW Karlsruhe

Bewegung des Roboters KI-basierte Roboterkalibrierung (KIRK – BmBF mit Artiminds Robotics und UniStuttgart)

- Mit Maschine Learning Methoden die Positioniergenauigkeit von preiswerten kollaborativen Robotern verbessern
- "Daten getrieben" statt physikalische Modellíerung
- Kalibrierung jedes einzelnen Roboters

Roboter – Was begrenzt die Genauigkeit?

Fehlerquellen

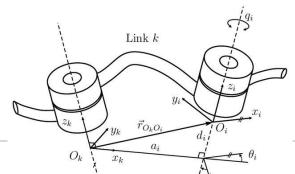
Umgebung

- Temperaturschwankungen
- Externe dynamische Anregungungen
- Verformung der Befestigung

Robotermechanik

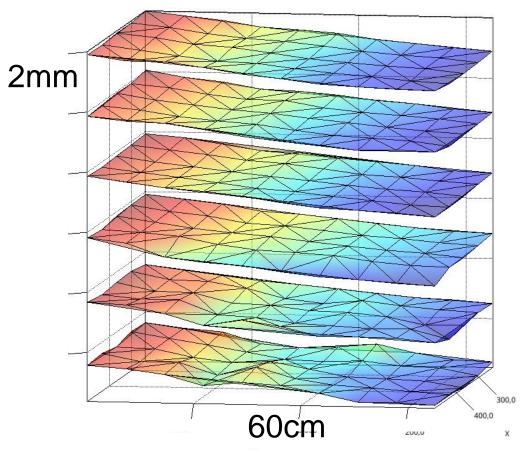
- Encoderauflösung
- Justagefehler
- Kinematische Abweichungen (Armlängen etc.)
- Erwärmung von Elektronik und Motoren
- Getriebesteifigkeit
- Getriebespiel
- Getriebereibung und -Verschleiß

Signalverarbeitung

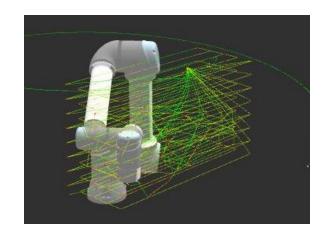

- Annahmen inverse Kinematik
- Regelabweichung Servoantriebe
- > 1mm
- < 1mm; > 0.1mm

Beispiel: Veränderungen in der Größenordnung von cm

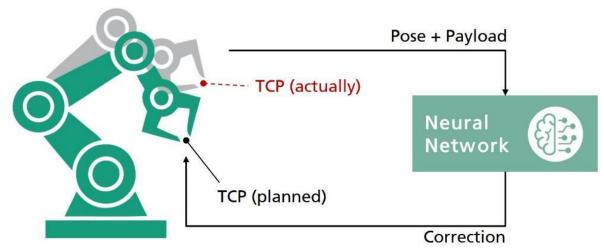
- nach Aufwärmphase eines UR10
- Nach Einzelkalibration eines UR5

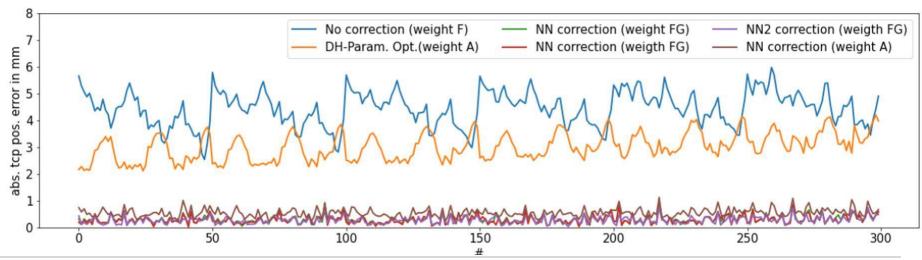

Ergebnisse - DH-parameter: nominal versus kalibriert

	r [mm] nominal	r [mm] calibrated	d [mm] nominal	d [mm] calibrated	α [º] nominal	α [º] calibrated
Base	0,0	0,0	162,5	162, <mark>4</mark> 24	0,0	0,0
Shoulder	0,0	-0, <mark>15</mark> 7	0,0	0,0	90,00	89,950
Elbow	-425,0	-425,146	0,0	0,0	0,00	0,120
Wrist 1	-392,0	392,135	133,3	134,007	0,0	-0,255
Wrist 2	0,0	0,063	99,7	99,639	-90,0	-89,978
TCP	0,0	0,09	99,6	99,382	90,0	89,973



Results




Zielposition – gemessen in z

- In –y Richtung +1mm
 Anstieg
- höhere Ebenen "besser"
- zum Rand "schlechter"
 - → Kompensation durch NN

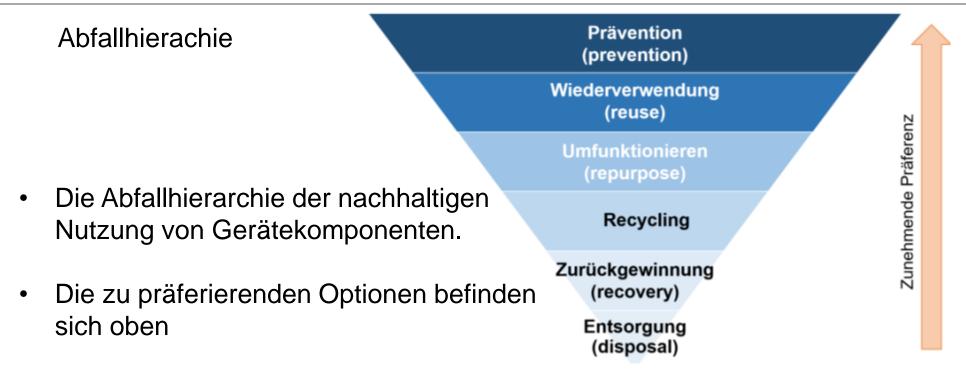
Ergebnisse nach NN-Kompensation

RoboGrind - Hybride KI für die flexible und hochautomatisierte Oberflächenbearbeitung

Projektpartner: IFF der Universität Stuttgart, Firma SHL AG,

Firma ArtiMinds Robotics GmbH

Projekt-Laufzeit: 01.10.2021 - 30.09.2023


Förderung durch: Invest BW

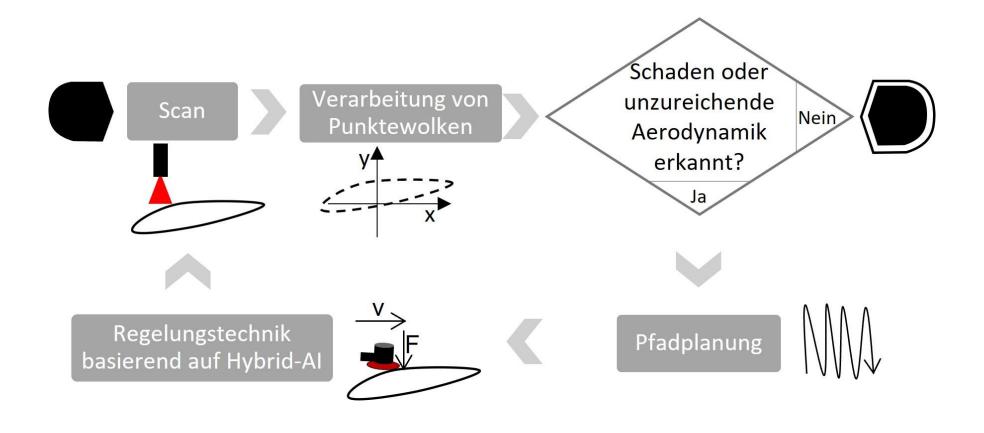
www.dhbw-karlsruhe.de/rahmlab

DHBW Karlsruhe

RoboGrind – Hybride KI für die flexible und hochautomatisierte Oberflächenbearbeitung mit Robotern (mit Uni Stuttgart, Artiminds Robotics, SHL)

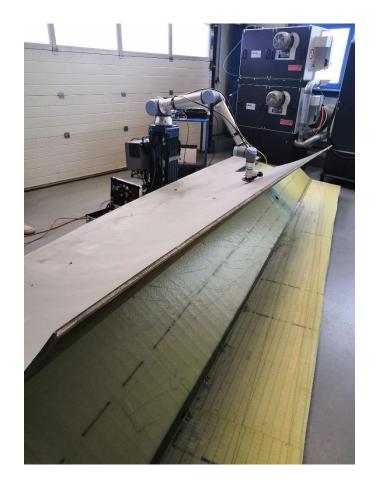
 Robogrind adressiert die zweithöchst präferierte Option "Wiederverwendung"

aus: WindEurope: "Accelerating Wind Turbine Blade Circularity", 2020.


Ziel des Projekts RoboGrind

Vereinbarkeit von Nachhaltigkeit und Wirtschaftlichkeit durch automatisierte, KI-basierte Wiederaufbereitung:

- KI ermöglicht automatisierte, individuelle Reparatur
- Verbindung von Sensoren zur Schadensdetektion mit Werkzeugen zur Oberflächenbearbeitung
- Hybride KI: Verbindung von Fachwissen mit kontinuierlichem Lernen auf Basis von Feedback-Schleifen
- Einsatz von Simulationsmodellen zur Planung und Schadensminimierung an Werkstücken


Workflow und Bestandteile von RoboGrind am Beispiel Windrad-Flügel-Aufbereitung

Integrationstreffen RoboGrind

TRAJO – Intuitiv konfigurierbare Trajektoren-Optimierung für flexible Roboteranwendungen

Projektpartner: Firma Wandelbot

Projekt-Laufzeit: 2.2.23 bis Ende 2024

Förderung durch: ZIM

www.dhbw-karlsruhe.de/rahmlab

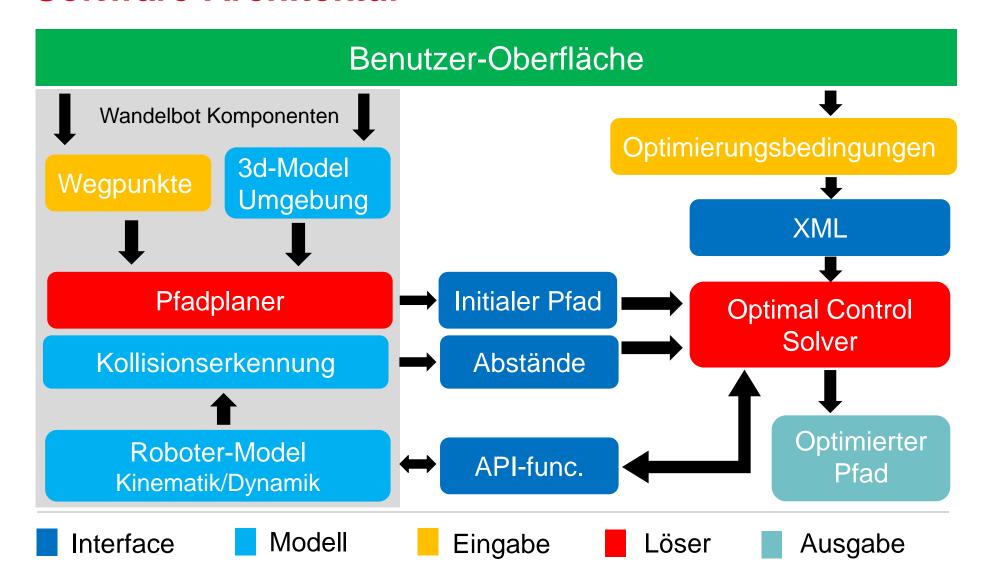
Ziel des Projekts TRAJO

Software-Prototypen für die Optimierung von Roboter-Bewegungen

- Dabei soll es insbesondere möglich werden den Energieverbrauch und den Verschleiss des Roboters selbst zu reduzieren.
- Komplexe Randbedingungen wie maximale Taktzeit und Drehmomente in den Aktuatoren, maximale Geschwindigkeiten, Beschleunigungen und Ruck müssen berücksichtigt werden
- Eigenkollisionen der Robotersegmente und des Roboters mit der Umgebung müssen ausgeschlossen werden

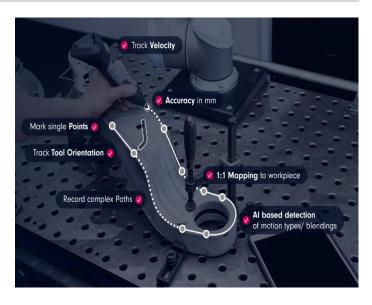
Kooperatives Forschungsprojekt

DHBW:


- Untersucht numerische Lösungsverfahren
- Aufbau einer Software-Pipeline zur Optimierung
- Vermessung (Stromverbrauch, Bewegungen, Kräfte/Momente)
- Dabei Einbindung von Studierenden in Form von Studienund Bachelor-Arbeiten

Wandelbot:

- Entwickelt Schnittstellen für bestehende Komponenten als Python-Wrapper
- Untersucht welche Kombinationen von Optimalitätskriterien und Randbedingungen in der Praxis wichtig sind
- Baut einen Hardware-Prototypen auf


Software-Architektur

Optimierungs-Verfahren


 Gestartet wird mit einer nicht-optimalen initialen Trajektorie, die mit vorhandenen Codes auf der Basis von Wegpunkten und geg. weiterer Eingaben bestimmt wird

- Es werden dann nicht einzelne Parameter einer optimalen, sondern ganze Zeitreihen (Trajektorien) optimiert (Optimal-Steuerungstheorie)
- Lösungsverfahren: Direct-multiple-shooting (da auf diese Weise Randbedinungen in Form von Ungleichungen leicht berücksichtigt werden können)

RAHM-LAB @ DHBW Karlsruhe

RoboGrind - Hybride KI für die flexible und hochautomatisierte Oberflächenbearbeitung

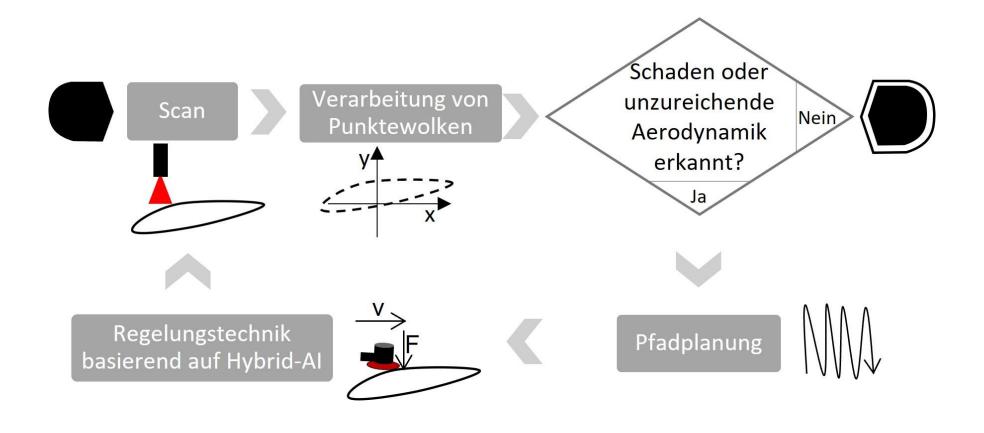
Projektpartner: IFF der Universität Stuttgart, Firma SHL AG,

Firma ArtiMinds Robotics GmbH

Projekt-Laufzeit: 01.10.2021 - 30.09.2023

Förderung durch: Invest BW

www.dhbw-karlsruhe.de/rahmlab


Ziel des Projekts RoboGrind

Vereinbarkeit von Nachhaltigkeit und Wirtschaftlichkeit durch automatisierte, KI-basierte Wiederaufbereitung:

- KI ermöglicht automatisierte, individuelle Reparatur
- Verbindung von Sensoren zur Schadensdetektion mit Werkzeugen zur Oberflächenbearbeitung
- Hybride KI: Verbindung von Fachwissen mit kontinuierlichem Lernen auf Basis von Feedback-Schleifen
- Einsatz von Simulationsmodellen zur Planung und Schadensminimierung an Werkstücken

Workflow und Bestandteile von RoboGrind am Beispiel Windrad-Flügel-Aufbereitung

Konsortium

ArtiMinds:

- Projektkoordination
- KI-basierte Bahnplanung und –regelung
- Kraftregelung, Datenerfassung und –verarbeitung
- Integration von Softwarekomponenten in ein Gesamtsystem
- Bereitstellung von Schnittstellen
- Umsetzung eines Demonstrators

• SHL:

- Evaluierung und Testdurchführung
- Bereitstellung von Expertenwissen für Oberflächenbearbeitung und Sensortechnik

• **IFF**:

- Forschung und Entwicklung von ML-Verfahren
- Entwicklung der Taskplanung mit Reinforcement Learning
- Entwicklung modell-prädiktiver, hybrider Regelungskonzepte
- Simulationsumgebung auf Basis von MuJoCo

DHBW:

- 3D-Modellierung und Vermessung von Werkstücken
- Konzeptionierung des Bearbeitungsprozesses
- Erstellung von Trainingsdatensätzen für KI-Verfahren
- Entwicklung von Algorithmen zur Sensordatenverarbeitung und –analyse
- Erstellung eines Modells zur Vorhersage von CFK-Materialabtrag

Integrationstreffen RoboGrind

TRAJO – Intuitiv konfigurierbare Trajektoren-Optimierung für flexible Roboteranwendungen

Projektpartner: Firma Wandelbot

Projekt-Laufzeit: 2.2.23 bis Ende 2024

Förderung durch: ZIM

www.dhbw-karlsruhe.de/rahmlab

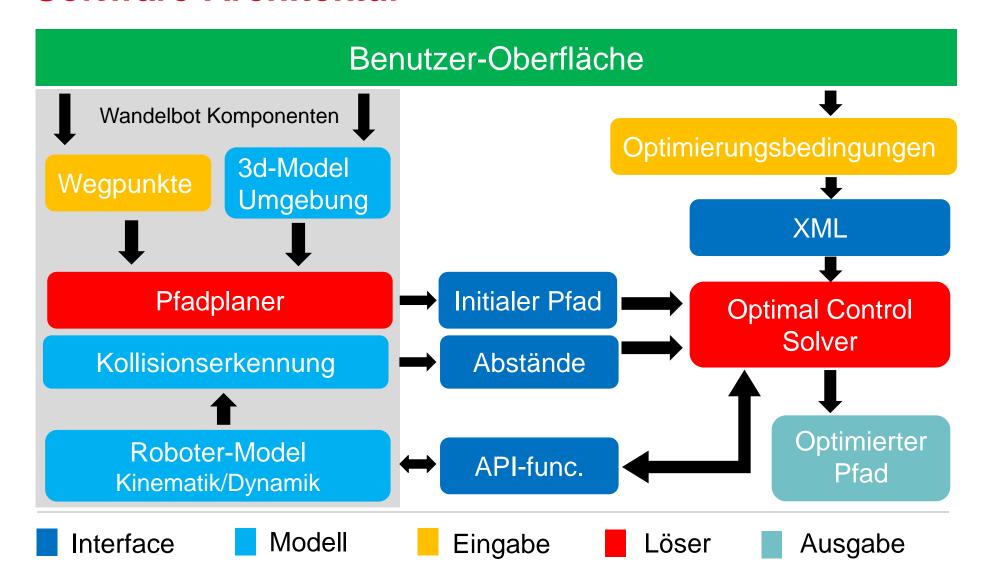
Ziel des Projekts TRAJO

Software-Prototypen für die Optimierung von Roboter-Bewegungen

- Dabei soll es insbesondere möglich werden den Energieverbrauch und den Verschleiss des Roboters selbst zu reduzieren.
- Komplexe Randbedingungen wie maximale Taktzeit und Drehmomente in den Aktuatoren, maximale Geschwindigkeiten, Beschleunigungen und Ruck müssen berücksichtigt werden
- Eigenkollisionen der Robotersegmente und des Roboters mit der Umgebung müssen ausgeschlossen werden

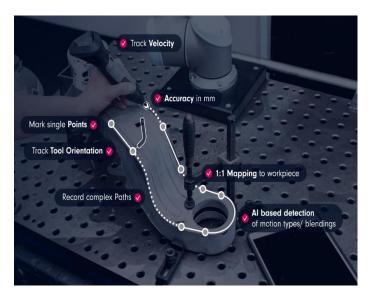
Kooperatives Forschungsprojekt

DHBW:


- Untersucht numerische Lösungsverfahren
- Aufbau einer Software-Pipeline zur Optimierung
- Vermessung (Stromverbrauch, Bewegungen, Kräfte/Momente)
- Dabei Einbindung von Studierenden in Form von Studienund Bachelor-Arbeiten

· Wandelbot:

- Entwickelt Schnittstellen für bestehende Komponenten als Python-Wrapper
- Untersucht welche Kombinationen von Optimalitätskriterien und Randbedingungen in der Praxis wichtig sind
- Baut einen Hardware-Prototypen auf


Software-Architektur

Optimierungs-Verfahren


 Gestartet wird mit einer nicht-optimalen initialen Trajektorie, die mit vorhandenen Codes auf der Basis von Wegpunkten und geg. weiterer Eingaben bestimmt wird

- Es werden dann nicht einzelne Parameter einer optimalen, sondern ganze Zeitreihen (Trajektorien) optimiert (Optimal-Steuerungstheorie)
- Lösungsverfahren: Direct-multiple-shooting (da auf diese Weise Randbedinungen in Form von Ungleichungen leicht berücksichtigt werden können)

RAHM-LAB @ DHBW Karlsruhe

